3D Bioplotter Research Papers

Displaying all papers by D. Hur (2 results)

A powerful combination in designing polymeric scaffolds: 3D bioprinting and cryogelation

International Journal of Polymeric Materials and Polymeric Biomaterials 2020 Volume 71, Issue 4, Pages 278-290

Three-dimensional (3D) bioprinting technologies have great attention in different researching areas such as tissue engineering, medicine, etc. due to its maximum mimetic property of natural biomaterials by providing cell combination, growth factors, and other biomaterials. Bioprinting of tissues, organs, or drug delivery systems emerged layer-by-layer deposition of bioinks. 3D bioprinting technique has some complexity such as choice of bioink combination, cell type, growth, and differentiation. In this study, a composite material in 3D bioprinting studies has been developed for biofabrication of the cell carrying scaffolds namely cryogenic scaffolds. Cryogenic scaffolds are highly elastic and have a continuous interconnected macroporous structure…

3D Micropatterned all Flexible Microfluidic Platform for Microwave Assisted Flow Organic Synthesis (MAFOS)

ChemPlusChem 2017 Volume 83, Issue 1, Pages 42-46

In present work, we fabricate large area, all flexible and microwaveable PDMS microfluidic reactor that is printed via 3D bioplotter system. The sacrificial microchannels are printed on Polydimethoxylane (PDMS) substrates by direct ink writing method using water soluble Pluronic F-127 ink and encapsulated between PDMS layers. The structure of micrometer sized channels is analyzed by optical and electron microscopy techniques. The fabricated flexible microfluidic reactors are utilized for acetylation of different amines under microwave irradiation to get acetylamides in shorter reaction time and good yields in Microwave Assisted Flow Organic Synthesis (MAFOS).